The Chilean Coastal Cordillera features a spectacular climate and vegetation gradient, ranging from arid and unvegetated areas in the north to humid and forested areas in the south. The EarthShape project ("Earth Surface Shaping by Biota") uses this natural gradient to investigate how climate and biological processes shape the Earth's surface. We explored the Critical Zone, the Earth's uppermost layer, in four key sites located in desert, semidesert, mediterranean, and temperate climate zones of the Coastal Cordillera, with the focus on weathering of granitic rock. Here, we present first results from 16 approximately 2 m-deep regolith profiles to document: (1) architecture of weathering zone; (2) degree and rate of rock weathering, thus the release of mineral-derived nutrients to the terrestrial ecosystems; (3) denudation rates; and (4) microbial abundances of bacteria and archaea in the saprolite. From north to south, denudation rates from cosmogenic nuclides are ~10 t km-2 yr-1 at the arid Pan de Azúcar site, ~20 t km-2 yr-1 at the semi-arid site of Santa Gracia, ~60 t km-2 yr-1 at the mediterranean climate site of La Campana, and ~30 t km-2 yr-1 at the humid site of Nahuelbuta. A and B horizons increase in thickness and elemental depletion or enrichment increases from north (~26 °S) to south (~38 °S) in these horizons. Differences in the degree of chemical weathering, quantified by the chemical depletion fraction (CDF), are significant only between the arid and sparsely vegetated site and the other three sites. Differences in the CDF between the sites, and elemental depletion within the sites are sometimes smaller than the variations induced by the bedrock heterogeneity. Microbial abundances (bacteria and archaea) in saprolite substantially increase from the arid to the semi-arid sites. With this study, we provide a comprehensive dataset characterizing the Critical Zone geochemistry in the Chilean Coastal Cordillera. This dataset confirms climatic controls on 4 weathering and denudation rates and provides prerequisites to quantify the role of biota in future studies.
With 450,000 kmKobresia (syn. Carex) pygmaea dominated pastures in the eastern Tibetan highlands are the world's largest pastoral alpine ecosystem forming a durable turf cover at 3000-6000 m a.s.l. Kobresia's resilience and competitiveness is based on dwarf habit, predominantly below-ground allocation of photo assimilates, mixture of seed production and clonal growth, and high genetic diversity. Kobresia growth is co-limited by livestock-mediated nutrient withdrawal and, in the drier parts of the plateau, low rainfall during the short and cold growing season. Overstocking has caused pasture degradation and soil deterioration over most parts of the Tibetan highlands and is the basis for this man-made ecosystem. Natural autocyclic processes of turf destruction and soil erosion are initiated through polygonal turf cover cracking, and accelerated by soil-dwelling endemic small mammals in the absence of predators. The major consequences of vegetation cover deterioration include the release of large amounts of C, earlier diurnal formation of clouds, and decreased surface temperatures. These effects decrease the recovery potential of Kobresia pastures and make them more vulnerable to anthropogenic pressure and climate change. Traditional migratory rangeland management was sustainable over millennia, and possibly still offers the best strategy to conserve and possibly increase C stocks in the Kobresia turf.
Understanding and quantification of phosphorus (P) fluxes are key requirements for predictions of future forest ecosystems changes as well as for transferring lessons learned from natural ecosystems to croplands and plantations. This review summarizes and evaluates the recent knowledge on mechanisms, magnitude, and relevance by which dissolved and colloidal inorganic and organic P forms can be translocated within or exported from forest ecosystems. Attention is paid to hydrological pathways of P losses at the soil profile and landscape scales, and the subsequent influence of P on aquatic ecosystems. New (unpublished) data from the German Priority Program 1685 ''Ecosystem Nutrition: Forest Strategies for limited Phosphorus Resources'' were added to provide up-to-date flux-based information. Nitrogen (N) additions increase the release of water-transportable P forms. Most P found in percolates and pore waters belongs to the so-called dissolved organic P (DOP) fractions, rich in orthophosphate-monoesters and also containing some orthophosphate-diesters. Total solution P concentrations range from ca. 1 to 400 μg P L -1 , with large variations among forest stands. Recent sophisticated analyses revealed that large portions of the DOP in forest stream water can comprise natural nanoparticles and fine colloids which under extreme conditions may account for 40-100% of the P losses. Their translocation within preferential flow passes may be rapid, mediated by storm events. The potential total P loss through leaching into subsoils and with streams was found to be less than 50 mg P m -2 a -1 , suggesting effects on ecosystems at centennial to millennium scale. All current data are based on selected snapshots only. Quantitative measurements of P fluxes in temperate forest systems are nearly absent in the literature, probably due to main research focus on the C and N cycles. Therefore, we lack complete ecosystem-based assessments of dissolved and colloidal P fluxes within and from temperate forest systems. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. Forest phosphorus cycle during ecosystem developmentForests are complex biogeochemical systems in which nutrient cycles readily change and become re-adjusted upon interactions with biotic and abiotic controls over diurnal, annual, decadal, centennial, and longer timescales (Hedin et al., 2003). Phosphorus (P) is an essential element for all living organisms. Modern agriculture avoids P limitation of primary production by continuous application of fertilizers, while forest ecosystems have developed efficient strategies for adapting to low P supply (Elser et al., 2007;Ilg et al., 2009;Rennenberg and Schmidt, 2010;Hinsinger et al., 2011). Increasing production of forests biomass in response to high atmospheric nitrogen (N) input and climate c...
Minerals with large specific surface areas promote the stabilization of soil organic matter (SOM). We analysed three acidic soils (dystric, skeletic Leptic Cambisol; dystric, laxic Leptic Cambisol; skeletic Leptic Entic Podzol) under Norway spruce (Picea abies) forest with different mineral compositions to determine the effects of soil type on carbon (C) stabilization in soil. The relationship between the amount and chemical composition of soil organic matter (SOM), clay content, oxalate-extractable Fe and Al (Fe o ; Al o ), and dithionite-extractable Fe (Fe d ) before and after treatment with 10% hydrofluoric acid (HF) in topsoil and subsoil horizons was analysed. Radiocarbon age, 13 C CPMAS NMR spectra, lignin phenol content and neutral sugar content in the soils before and after HF-treatment were determined and compared for bulk soil samples and particle size separates. Changes in the chemical composition of SOM after HF-treatment were small for the A-horizons. In contrast, for B-horizons, HF-soluble (mineralassociated) and HF-resistant (non-mineral-associated) SOM showed systematic differences in functional C groups. The non-mineral associated SOM in the B-horizons was significantly depleted in microbiallyderived sugars, and the contribution of O/N-alkyl C to total organic C was less after HF-treatment. The radiocarbon age of the mineral-associated SOM was younger than that of the HF-resistant SOM in subsoil horizons with small amounts of oxalate-extractable Al and Fe. However, in horizons with large amounts of oxalate-extractable Al and Fe the HF-soluble SOM was considerably older than the HF-resistant SOM. In acid subsoils a specific fraction of the organic C pool (O/N-alkyl C; microbiallyderived sugars) is preferentially stabilized by association with Fe and Al minerals. Stabilization of SOM with the mineral matrix in soils with large amounts of oxalate-extractable Al o and Fe o results in a particularly stable and relatively old C pool, which is potentially stable for thousands of years.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.