In the Amundsen Sea, warm saline Circumpolar Deep Water (CDW) crosses the continental shelf toward the vulnerable West Antarctic ice shelves, contributing to their basal melting. Due to lack of observations, little is known about the spatial and temporal variability of CDW, particularly seasonally. A new data set of 6,704 seal tag temperature and salinity profiles in the easternmost trough between February and December 2014 reveals a CDW layer on average 49 dbar thicker in late winter (August to October) than in late summer (February to April), the reverse seasonality of that seen at moorings in the western trough. This layer contains more heat in winter, but on the 27.76 kg/m 3 density surface CDW is 0.32 ∘ C warmer in summer than in winter, across the northeastern Amundsen Sea, which may indicate that wintertime shoaling offshelf changes CDW properties onshelf. In Pine Island Bay these seasonal changes on density surfaces are reduced, likely by gyre circulation.
Plain Language SummaryIn the Amundsen Sea, Antarctica, warm salty water crosses the continental shelf from the deep open ocean, toward the vulnerable West Antarctic ice shelves, bringing heat to help melt them from underneath. Due to lack of observations, little is known about how this flow of warm water varies in space and time, particularly seasonally. Between February and December 2014, in a trough in the eastern Amundsen Sea, 6,704 profiles were collected by sensors attached to seals, measuring temperature and salinity as the seals return from dives up to 1,200 m deep. These data showed that this warm (∼1 ∘ C) deep layer is on average ∼50 m thicker in late winter (August to October) than in late summer (February to April), the reverse seasonality of that seen within a trough in the western Amundsen Sea. This warm layer contains more heat in winter but on a surface of constant density is 0.32 ∘ C warmer in summer than in winter, across the northeastern Amundsen Sea. This may indicate that in winter the deep waters offshelf rise, allowing different water onto the continental shelf. In Pine Island Bay these seasonal changes on density surfaces are reduced, probably because here the water circulates and mixes.