Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval 1999
DOI: 10.1145/312624.312682
|View full text |Cite
|
Sign up to set email alerts
|

An algorithmic framework for performing collaborative filtering

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

3
621
1
17

Year Published

2000
2000
2022
2022

Publication Types

Select...
5
3

Relationship

0
8

Authors

Journals

citations
Cited by 1,793 publications
(642 citation statements)
references
References 17 publications
3
621
1
17
Order By: Relevance
“…When calculating the similarity between items in the traditional item-based CF technique, only the ratings given by the users to the products are used [11,12].The ratings which are given to items are presented in Tab. 1, in the form of a user-product matrix.…”
Section: Our Solutionmentioning
confidence: 99%
“…When calculating the similarity between items in the traditional item-based CF technique, only the ratings given by the users to the products are used [11,12].The ratings which are given to items are presented in Tab. 1, in the form of a user-product matrix.…”
Section: Our Solutionmentioning
confidence: 99%
“…Group Lens (Tornago 2006) originally employed various collaborative filtering algorithms (Breese et al 1998;Herlocker et al 1999) for predicting users' interests, based on explicitly provided users ratings, implicit ratings derived from users' navigation, and transaction histories (e.g., shopping basket operations, purchases). Group Lens stored all user ratings in a database, but kept a correlation matrix of all ratings in cache memory during runtime.…”
Section: Traditional Data Repositories Of Generic User Modeling Systementioning
confidence: 99%
“…It employs memory-based Spearman correlation for determining the proximity between users and various weighted prediction algorithms from the area of collaborative filtering (see Herlocker et al 1999). …”
Section: User Modeling Componentsmentioning
confidence: 99%
“…Existem 2 grandes tipos de abordagens quando falamos no problema de recomendação: baseada em conteúdo [3] e filtragem colaborativa [10]. Os modelos baseados em conteúdo tentam aprender, como atributos de produtos e atributos de usuários interagem, para produzir um número que descreva alguma relação, como uma relação de preferência.…”
Section: Introductionunclassified
“…Ele possui uma estrutura de alto nível, que possibilitou em 1999, que Herlocker [10] propusesse um framework algoritmico de para filtragem colaborativa. Nesse framework, a principal operaçãoé o cálculo da similaridade entre dois usuários ou itens, e com esses valores de similaridade em mãos, fazer a prediçãoé apenas uma conta que pondera similaridades e notas.…”
Section: Introductionunclassified