2017
DOI: 10.1007/978-3-319-59288-6_28
|View full text |Cite
|
Sign up to set email alerts
|

An Approach of Extracting Feature Requests from App Reviews

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
6
0

Year Published

2022
2022
2023
2023

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 7 publications
(6 citation statements)
references
References 20 publications
0
6
0
Order By: Relevance
“…Clustering is thus widely used as an exploratory analysis technique to infer topics commonly discussed by users (Pagano and Maalej 2013;Guzman and Maalej 2014;Liu et al 2018) and aggregate reviews containing semantically related information (Chen et al 2014;Palomba et al 2017;Zhou et al 2020). Clustering can be used for grouping reviews that request the same feature (Peng et al 2016;Di Sorbo et al 2016), report similar problems (Martin et al 2015;Villarroel et al 2016;Gao et al 2018b;Williams et al 2020), or discuss a similar characteristic of the app (Vu et al 2016;Chen et al 2019;Xiao et al 2020). The generated clusters might help software engineers synthesize information from a group of reviews referring to the same topics rather than examining each review individually (Fu et al 2013;Hadi and Fard 2020).…”
Section: Clusteringmentioning
confidence: 99%
See 4 more Smart Citations
“…Clustering is thus widely used as an exploratory analysis technique to infer topics commonly discussed by users (Pagano and Maalej 2013;Guzman and Maalej 2014;Liu et al 2018) and aggregate reviews containing semantically related information (Chen et al 2014;Palomba et al 2017;Zhou et al 2020). Clustering can be used for grouping reviews that request the same feature (Peng et al 2016;Di Sorbo et al 2016), report similar problems (Martin et al 2015;Villarroel et al 2016;Gao et al 2018b;Williams et al 2020), or discuss a similar characteristic of the app (Vu et al 2016;Chen et al 2019;Xiao et al 2020). The generated clusters might help software engineers synthesize information from a group of reviews referring to the same topics rather than examining each review individually (Fu et al 2013;Hadi and Fard 2020).…”
Section: Clusteringmentioning
confidence: 99%
“…Pattern matching techniques (employed in 22 studies) localize parts of review text (or its linguistic analysis) matching hand-crafted patterns. Such patterns can take many forms, such as, regular expressions (Yang and Liang 2015;Groen et al 2017;Uddin et al 2020), PoS sequences (Vu et al 2016;Johann et al 2017), dependencies between words (Gu and Kim 2015;Peng et al 2016;Di Sorbo et al 2017;Srisopha et al 2020c) or simple keyword matching (Yang and Liang 2015;Di Sorbo et al 2017;Tao et al 2020). The technique has been adopted in Information Extraction e.g., to extract requirements from reviews (Yang and Liang 2015;Groen et al 2017), Classification e.g., to classify requirements into functional and non-functional (Yang and Liang 2015) and Summarization e.g., to provide a bug report summary (Groen et al 2017).…”
Section: Natural Language Processingmentioning
confidence: 99%
See 3 more Smart Citations