SUMMARYLifeline systems, such as water distribution and gas supply networks, usually cover large areas. For these systems, seismic design is always a difficult problem because of the complexity of large-scale networks. In this paper, a topology optimization technology for lifeline networks is established. Firstly, in order to speed up the convergence of optimization process, an element investment importance analysis is carried out to evaluate the importance of components to the lifeline network. Then a topology optimization model is established. The aim of the model is to find the least-cost network topology while the seismic reliability between the sources and each terminal satisfies prescribed reliability constraints. For this optimization problem, a genetic algorithm, which takes network topologies as the individuals of its population, is used to search for the optimal solutions by suitable operators, including selection, crossover and mutation operators. The capacity of the proposed algorithm is illustrated by its applications to a simple example network consisting of 10 nodes and an actual network with 391 nodes located in a large city of China.