With the increase of drought and flood frequency, the drought-flood abrupt alternation events occur frequently. Due to the coexistence and rapid transformation of drought and flood, the drought-flood abrupt alternation events is often more harmful and threatening than the single drought or flood event to the security of the society. This study is to synthetically evaluate the evolving characteristics of drought, flood, and drought-flood abrupt alternation events under climate change, which are identified by using the Standard Weighted Average Precipitation (SWAP) index. The variability of drought, flood, and drought-flood abrupt alternation events in the future is predicted by using GCM projections, whose outputs are corrected by using a daily bias correction method. The results show that: (1) The SWAP index has the capability to judge reliably the onset, duration, and intensity over the study areas, and can be used to monitor drought-flood abrupt alternation events efficiently; (2) In the reference period (1961–2005), for the drought-flood abrupt alternation events, the frequency has a downward trend in the upper reaches and an upward trend in the lower reaches, and the spatial distribution of intensity shows a contrary law to that of frequency; (3) The frequency and intensity of drought-flood abrupt alternation events show an upward trend in the whole basin in the future period (2021–2095), under the RCP4.5 and RCP8.5 scenarios. These results indicate that drought-flood abrupt alternation events can be more frequent, and the intensity will significantly increase in the 21st century, which may likely pose a serious impact on this basin.