Recently, the concept of Internet of Agent has been introduced as a potential technology that pushes intelligence, data processing, analytics and communication capabilities down to the point where the data originates. In this paper, we introduce a novel approach for a Decentralized Home Energy Management System by applying the Internet of Agent concept. In particular, we first present an Internet of Agent framework in terms of sensing, communicating and collaborating among connected appliances. Then, the decentralized management based on consensual negotiation mechanism with several intelligent techniques are proposed for dynamic scheduling connected appliance. Specifically, by applying the Internet of Agent framework, connected appliances are regarded as smart agents that are able to make individual decisions by reaching agreement over the exchange of operations on competitive resources. Furthermore, in this study, the load balancing problem in which load shifting is able to reduce the electricity demand during peak hours is taken into account in order to emphasize the effectiveness of our approach. For the experiment, we develop a simulation of smart home environment to evaluate our approach using NetLogo, a tool which provides real-time analysis in the modeling and simulation domain of complex systems.