The highly anticipated 5G network is projected to be introduced in 2020. 5G stakeholders are unanimous that densification of mobile networks is the way forward. The densification will be realized by means of small cell technology, and it is capable of providing coverage with a high data capacity. The EU-funded H2020-MSCA project ''SECRET'' introduced covering the urban landscape with mobile small cells, since these take advantages of the dynamic network topology and optimizes network services in a cost-effective fashion. By taking advantage of the device-to-device communications technology, large amounts of data can be transmitted over multiple hops and, therefore, offload the general network. However, this introduction of mobile small cells presents various security and privacy challenges. Cryptographic security solutions are capable of solving these as long as they are supported by a key management scheme. It is assumed that the network infrastructure and mobile devices from network users are unable to act as a centralized trust anchor since these are vulnerable targets to malicious attacks. Security must, therefore, be guaranteed by means of a key management scheme that decentralizes trust. Therefore, this paper surveys the state-of-the-art key management schemes proposed for similar network architectures (e.g., mobile ad hoc networks and ad hoc device-to-device networks) that decentralize trust. Furthermore, these key management schemes are evaluated for adaptability in a network of mobile small cells. INDEX TERMS 5G, beyond 5G, decentralized systems, device-to-device communication, key management, mobile small cells, security, small cells, wireless ad hoc networks.