Beam of light shaping process can be considered ultimate, if both irradiance and wavefront spatial distributions are under control and both can be shaped arbitrarily. In order to keep these two quantities determined simultaneously, it is required to apply at least two powered refractive or reflective surfaces. In this paper, a fully geometric design method of double-freeform beam shapers is discussed briefly. The presented algorithm is based on two stages. First, integrable input-output ray mapping is calculated by the application of the novel GATMA (Geometric Approach to Monge–Ampere equation) method. It allows us to determine the shape of the first freeform surface. Then, according to the condition of constant optical path length between input and output plane, corrected by wavefront phases at those planes, the second surface is determined. GATMA algorithm combines advantages of Monge–Ampere (MA) equation and ray-tracing efficient apparatus. Compared to the state-of-the-art freeform design methods, GATMA does not need to solve MA equation directly but uses this equation as an error function. Such approach makes the computation algorithm simpler and more robust and convergent. The application of the proposed method in a challenging design example of a beam shaper, transforming uniform collimated beam into a beam having a triangular cross section and flat wavefront, is presented as a case study.