One of the key advantages of a low-flying unmanned aircraft system (UAS) is its ability to acquire digital images at an ultrahigh spatial resolution of a few centimeters. Remote sensing of quantitative biochemical and biophysical characteristics of small-sized spatially fragmented vegetation canopies requires, however, not only high spatial, but also high spectral (i.e., hyperspectral) resolution. In this paper, we describe the design, development, airborne operations, calibration, processing, and interpretation of image data collected with a new hyperspectral unmanned aircraft system (HyperUAS). HyperUAS is a remotely controlled multirotor prototype carrying onboard a lightweight pushbroom spectroradiometer coupled with a dual frequency GPS and an inertial movement unit. The prototype was built to remotely acquire imaging spectroscopy data of 324 spectral bands (162 bands in a spectrally binned mode) with bandwidths between 4 and 5 nm at an ultrahigh spatial resolution of 2-5 cm. Three field airborne experiments, conducted over agricultural crops and over natural ecosystems of Antarctic mosses, proved operability of the system in standard field conditions, but also in a remote and harsh, low-temperature environment of East Antarctica. Experimental results demonstrate that HyperUAS is capable of delivering georeferenced maps of quantitative biochemical and biophysical variables of vegetation and of actual vegetation health state at an unprecedented spatial resolution of 5 cm.
AbstractOne of the key advantages of a low-flying unmanned aircraft system (UAS) is its ability to acquire digital images at ultra-high spatial resolution of a few centimetres. Remote sensing of quantitative biochemical and biophysical characteristics of small-sized spatially fragmented vegetation canopies requires, however, not only high spatial, but also high spectral (i.e. hyperspectral) resolution. In this paper, we describe the design, development, airborne operations, in addition to calibration, processing and interpretation of image data collected with a new hyperspectral unmanned aircraft system (HyperUAS). HyperUAS is a remotely controlled multi-rotor prototype carrying on-board a * Corresponding author lightweight pushbroom spectroradiometer coupled with a dual frequency global positioning system (GPS) and an inertial movement unit (IMU). The prototype was built to remotely acquire imaging spectroscopy data of 324 spectral bands (162 bands in a spectrally binned mode) with band-widths between 4 and 5 nm at an ultra-high spatial resolution of 2 to 5 cm. Three field airborne experiments, conducted over agricultural crops and over natural ecosystems of Antarctic mosses, proved operability of the system in standard field conditions, but also in a remote and harsh, low-temperature environment of East Antarctica. Experimental results demonstrate that HyperUAS is capable of delivering georeferenced maps of quantitative biochemical and biophysical variables of vegetation and of actual vegetation health state at unprecedented spa...