The global need for healthy and safe open spaces faces continuous temperature rise due to the heat island phenomenon and climate change. This problem requires new strategies for improving the habitability of open spaces (indoor and outdoor conditions in buildings). These techniques include reducing solar radiation, reducing the temperature of surrounding surfaces, and reducing the air temperature. The radiant solutions are essential for outdoor comfort, both in summer and in winter. They are easy to integrate into open spaces. This study explores a new concept of radiant solutions adapted for outdoor spaces. The solution was evaluated in a test cell to obtain its thermal behaviour in different operation conditions. Solutions were optimised for operating in a cooling regimen since it has been identified that the demands for comfort in open spaces in hot climates during the most severe summer months are more pronounced. Experimental results have allowed getting an inverse model to analyse the thermal behaviour of the solution. The inverse model achieved high precision in its estimations. Also, it facilitated knowing the radiant and convective effects. Only the radiant heat flux is relevant in open spaces with a low level of air confinement. Finally, the discussion describes the application of the proposed model. The model allows the replicability of the solution—creating new designs (integration) or evaluating into different operating conditions of the system. This discussion demonstrates the high level of knowledge acquired in the characterisation of the solution studied.