2006
DOI: 10.1016/j.jmaa.2005.04.059
|View full text |Cite
|
Sign up to set email alerts
|

An extension of Sharkovsky's theorem to periodic difference equations

Abstract: We present an extension of Sharkovsky's theorem and its converse to periodic difference equations. In addition, we provide a simple method for constructing a p-periodic difference equation having an r-periodic geometric cycle with or without stability properties.  2005 Elsevier Inc. All rights reserved.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

1
47
0
4

Year Published

2008
2008
2022
2022

Publication Types

Select...
4
4

Relationship

3
5

Authors

Journals

citations
Cited by 48 publications
(52 citation statements)
references
References 27 publications
1
47
0
4
Order By: Relevance
“…Устойчивость равновесия (5) определяется значениями собственных чисел, удовлетво-ряющих характеристическому многочлену системы (8):…”
Section: модель рикера с периодическим мальтузианским параметромunclassified
See 2 more Smart Citations
“…Устойчивость равновесия (5) определяется значениями собственных чисел, удовлетво-ряющих характеристическому многочлену системы (8):…”
Section: модель рикера с периодическим мальтузианским параметромunclassified
“…определяет в параметрическом пространстве (α, ρ) границу области устойчивости ненуле-вых стационарных решений системы (8).…”
Section: модель рикера с периодическим мальтузианским параметромunclassified
See 1 more Smart Citation
“…Stability notions for periodic difference equations have been investigated by many authors. Including, to cite few, AlSharawi and Angelos [3], AlSharawi, Angelos, Elaydi and Rakesh [4], Henson [11], Yakubu [15], Oliveira and D'Aniello [14], and Selgrado and Roberds [20].…”
Section: Stabilitymentioning
confidence: 99%
“…In [1] AlSharawi et al focused, among other things, on the extension of Sharkovsky's theorem to the periodic difference equation (1.4). Moreover, they were able to describe the combinatorial structure of the periodic orbits of equation (1.4).…”
Section: Introductionmentioning
confidence: 99%