Rock mechanical properties are critical for drilling, wellbore stability, and well stimulation. There are usually two laboratory methods to determine rock mechanical properties: static compression tests and acoustic velocity measurements. Rocks are heterogeneous, so there are significant differences between static elastic constants and the corresponding dynamic ones. Usually, static test results are more representative than dynamic methods but the static tests are time consuming and costly. Dynamic methods are nondestructive and less expensive, which are practical in the laboratory and field. In this paper, we compare the static and dynamic elastic properties of Eagle Ford Shale by triaxial compressive tests and ultrasonic velocity tests. Correlations between static and dynamic elastic properties are developed. Conversion from dynamic mechanical properties to static mechanical properties is established for better estimating reservoir mechanical properties. To better understand the relationship of static and dynamic mechanical properties, 30 Eagle Ford Shale samples were tested. According to the test results, the dynamic properties are considerably different from the static counterparts. For all tested samples, static Young’s modulus is lower than dynamic Young’s modulus, ranging from 55% to 90%. The difference of the static and dynamic Young’s moduli decreases with the increasing of confining pressure. The reason may be because the microcracks closed in high confining pressure. Correlations between static and dynamic Young’s modulus are developed by regression analysis, which are crucial to understand the rock mechanical properties and forecast reservoir performance when direct measurement of static mechanical properties is not available or expensive. There are no strong correlations between static and dynamic Poisson’s ratios observed for the tested samples. Two potentially major reasons for the discrepancy of the static and dynamic properties of Eagle Ford Shale are discussed. Lithology and heterogeneity may be the inherent reasons, and external causes are probably the difference in strain amplitude and frequency.