Titanium is currently familiar for its light weight, high strength, and non-reactive nature over all the metals. Titanium metal matrix composites (TMCs) are very popular in the field of aerospace, automotive, defense, and biomedical because of their high specific strength, light weight, and biocompatibility nature. Some of the extensively used fabrication methods like powder metallurgy (PM), additive manufacturing (AM), and spark plasma sintering (SPS) have been reviewed here with some of the properties of TMCs. By varying various types of reinforcements, it is possible to achieve the required properties as per industrial and modern applications in TMC. This study also includes the consequence of sintering temperature on properties of TMCs like physical, mechanical, and structural. Titanium alloys are showing good mechanical and biomedical properties when reinforced with carbon fibers, borides, ceramics, and plenty of other materials as continuous fiber or discontinuous particulates and whiskers. In this paper, the applications of TMCs in aerospace, automobile, biomedical, and defense have been narrated. Besides all these favorable properties and applications, TMCs can’t be used extensively in the said applications because of their high cost and difficulty in machining, that discussed in this paper over various challenges of TMCs. The cost reduction can be done by making Ti - super alloys. In addition, there is a necessity for an effective cooling system during the machining of TMCs to enhance machinability and some of the effective methods which may enhance the machinability of TMCs were also discussed.