2003
DOI: 10.1002/int.10127
|View full text |Cite
|
Sign up to set email alerts
|

An overview of operators for aggregating information

Abstract: In this work, we first make a survey of the existing main aggregation operators and then propose some new aggregation operators such as the induced ordered weighted geometric averaging (IOWGA) operator, generalized induced ordered weighted averaging (GIOWA) operator, hybrid weighted averaging (HWA) operator, etc., and study their desirable properties. Finally, we briefly classify all of these aggregation operators.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
315
0

Year Published

2005
2005
2015
2015

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 711 publications
(327 citation statements)
references
References 86 publications
0
315
0
Order By: Relevance
“…, P m , and indicates the global preference between every pair of alternatives according to the majority of experts' opinions. Currently, at least 90 different families of aggregation operators have been studied [11,12,17,19,21,35,51,52,55,56]. Among them the Ordered Weighted Averaging (OWA) operator proposed by Yager [52] is the most widely used.…”
Section: Selection Processmentioning
confidence: 99%
“…, P m , and indicates the global preference between every pair of alternatives according to the majority of experts' opinions. Currently, at least 90 different families of aggregation operators have been studied [11,12,17,19,21,35,51,52,55,56]. Among them the Ordered Weighted Averaging (OWA) operator proposed by Yager [52] is the most widely used.…”
Section: Selection Processmentioning
confidence: 99%
“…n A After introducing the concept and operations of AIFSs, Xu and Yager in [10], Xu in [11,12] and Xu and Da in [9] introduced the concepts and arithmetic operations of intuitionistic fuzzy numbers. The novel concept of complex fuzzy set and its properties and operations were studied by Ramot et al in 2002 [3].…”
Section: Power ( )mentioning
confidence: 99%
“…Some families of functions suggested in the literature generalize weighted means and OWA operators in the sense that one of these functions is obtained when the other one has a "neutral" behavior; that is, its weighting vector is that of the arithmetic mean. This is the case of the operator proposed by Engemann et al [9], the weighted OWA (WOWA) operator (Torra [2]), the hybrid weighted averaging (HWA) operator (Xu and Da [10]), the IP-OWA operator (Merigó [11]) and the hybrid weighted arithmetical averaging (HWAA) operator (Lin and Jiang [12]). Notice that, as pointed out by Wang [13], the IP-OWA operator and the HWAA operator are the same type of aggregation functions, although the interpretation of their weighting vectors are different.…”
Section: Introductionmentioning
confidence: 99%