Decision situations in which several individual are involved are known as group decision‐making (GDM) problems. In such problems, each member of the group, recognizing the existence of a common problem, tries to come to a collective decision. A high level of consensus among experts is needed before reaching a solution. It is customary to construct consensus measures by using similarity functions to quantify the closeness of experts preferences. The use of a metric that describes the distance between experts preferences allows the definition of similarity functions. Different distance functions have been proposed in order to implement consensus measures. This paper examines how the use of different aggregation operators affects the level of consensus achieved by experts through different distance functions, once the number of experts has been established in the GDM problem. In this situation, the experimental study performed establishes that the speed of the consensus process is significantly affected by the use of diverse aggregation operators and distance functions. Several decision support rules that can be useful in controlling the convergence speed of the consensus process are also derived.
Interval fuzzy preference relations can be useful to express decision makers' preferences in group decision-making problems. Usually, we apply a selection process and a consensus process to solve a group decision situation. In this paper, we present a consensus model for group decision-making problems with interval fuzzy preference relations. This model is based on two consensus criteria, a consensus measure and a proximity measure, and also on the concept of coincidence among preferences. We compute both consensus criteria in the three representation levels of a preference relation and design an automatic feedback mechanism to guide experts in the consensus reaching process. We show an application example in social work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.