Except for histological study, there are currently no suitable techniques available for the detection and identification of primordial follicles in ovary of primary ovarian insufficiency patients who have undetectable AMH levels. Also, the ability to locate and quantify follicles on ovarian cortex strips, without fixation, is valuable for patients who could undergo subsequent successful ovarian tissue transplantation. Although optical coherence tomography (OCT) is a well-established high resolution imaging technique without fixation commonly applied in biomedicine, few reports are available on ovarian tissue imaging. In present study, we established standard OCT follicle images at each developmental stage, including the primordial follicle, and demonstrated the efficacy of OCT to estimate IVF outcome in transplanted mice ovary like ovarian reserve tests. Unfortunately, the current commercial OCT could not be used to accurate follicle count the number of follicles for whole ovary, because the maximum depth of examination was 100 μm. And we demonstrated the safety of OCT examination, it did not affect IVF outcome and birth defect rate, and reproductive ability. Although there is room for improvement, these findings will be first step to bring OCT examination a step closer to clinical application for measuring true ovarian reserve and localizing follicles.