Background
The development of resistance against insecticides in Aedes aegypti can lead to operational failures in control programs. Knowledge of the spatial and temporal trends of this resistance is needed to drive effective monitoring campaigns, which in turn provide data on which vector control decision-making should be based.
Methods
Third-stage larvae (L3) from the F1 and F2 generations of 39 Peruvian field populations of Ae. aegypti mosquitoes from established laboratory colonies were evaluated for resistance against the organophosphate insecticide temephos. The 39 populations were originally established from eggs collected in the field with ovitraps in eight departments of Peru during 2018 and 2019. Dose–response bioassays, at 11 concentrations of the insecticide, were performed following WHO recommendations.
Results
Of the 39 field populations of Ae. aegypti tested for resistance to temephos , 11 showed high levels of resistance (resistance ratio [RR] > 10), 16 showed moderate levels of resistance (defined as RR values between 5 and 10) and only 12 were susceptible (RR < 5). The results segregated the study populations into two geographic groups. Most of the populations in the first geographic group, the coastal region, were resistant to temephos, with three populations (AG, CR and LO) showing RR values > 20 (AG 21.5, CR 23.1, LO 39.4). The populations in the second geographic group, the Amazon jungle and the high jungle, showed moderate levels of resistance, with values ranging between 5.1 (JN) and 7.1 (PU). The exception in this geographic group was the population from PM, which showed a RR value of 28.8 to this insecticide.
Conclusions
The results of this study demonstrate that Ae. aegypti populations in Peru present different resistance intensities to temephos, 3 years after temephos use was discontinued. Resistance to this larvicide should continue to be monitored because it is possible that resistance to temephos could decrease in the absence of routine selection pressures.
Graphical Abstract