Over the years, research on fuzzy clustering algorithms has attracted the attention of many researchers, and they have been applied to various areas, such as image segmentation and data clustering. Various fuzzy clustering algorithms have been put forward based on the initial Fuzzy C-Means clustering (FCM) with Euclidean distance. However, the existing fuzzy clustering approaches ignore two problems. Firstly, clustering algorithms based on Euclidean distance have a high error rate, and are more sensitive to noise and outliers. Secondly, the parameters of the fuzzy clustering algorithms are hard to determine. In practice, they are often determined by the user’s experience, which results in poor performance of the clustering algorithm. Therefore, considering the above deficiencies, this paper proposes a novel fuzzy clustering algorithm by combining the Gaussian kernel function and Grey Wolf Optimizer (GWO), called Kernel-based Picture Fuzzy C-Means clustering with Grey Wolf Optimizer (KPFCM-GWO). In KPFCM-GWO, the Gaussian kernel function is used as a symmetrical measure of distance between data points and cluster centers, and the GWO is utilized to determine the parameter values of PFCM. To verify the validity of KPFCM-GWO, a comparative study was conducted. The experimental results indicate that KPFCM-GWO outperforms other clustering methods, and the improvement of KPFCM-GWO is mainly attributed to the combination of the Gaussian kernel function and the parameter optimization capability of the GWO. What is more, the paper applies KPFCM-GWO to analyzes the value of an airline’s customers, and five levels of customer categories are defined.