The output from the peripheral terminals of primary nociceptive neurons, which detect and encode the information regarding noxious stimuli, is crucial in determining pain sensation. The nociceptive terminal endings are morphologically complex structures assembled from multiple branches of different geometry, which converge in a variety of forms to create the terminal tree.The output of a single terminal is defined by the properties of the transducer channels producing the generation potentials and voltage-gated channels, translating the generation potentials into action potential firing. However, in the majority of cases, noxious stimuli activate multiple terminals; thus, the output of the nociceptive neuron is defined by the integration and computation of the inputs of the individual terminals. Here we used a computational model of nociceptive terminal tree to study how the architecture of the terminal tree affects input-output relation of the primary nociceptive neurons. We show that the input-output properties of the nociceptive neurons depend on the length, the axial resistance, and location of individual terminals. Moreover, we show that activation of multiple terminals by capsaicin-like current allows summation of the responses from individual terminals, thus leading to increased nociceptive output. Stimulation of terminals in simulated models of inflammatory or nociceptive hyperexcitability led to a change in the temporal pattern of action potential firing, emphasizing the role of temporal code in conveying key information about changes in nociceptive output in pathological conditions, leading to pain hypersensitivity.