The generation of pain signals from primary afferent neurons is explained by a labeled-line code. However, this notion cannot apply in a simple way to cutaneous C-fibers, which carry signals from a variety of receptors that respond to various stimuli including agonist chemicals. To represent the discharge patterns of C-fibers according to different agonist chemicals, we have developed a quantitative approach using three consecutive spikes. By using this method, the generation of pain in response to chemical stimuli is shown to be dependent on the temporal aspect of the spike trains. Furthermore, under pathological conditions, gamma-aminobutyric acid resulted in pain behavior without change of spike number but with an altered discharge pattern. Our results suggest that information about the agonist chemicals may be encoded in specific temporal patterns of signals in C-fibers, and nociceptive sensation may be influenced by the extent of temporal summation originating from the temporal patterns.
This study aimed to investigate the effect of charge-balanced transcutaneous electrical nerve stimulation (cb-TENS) in accelerating recovery of the facial function and nerve regeneration after facial nerve (FN) section in a rat model. The main trunk of the left FN was divided and immediately sutured just distal to the stylomastoid foramen in 66 Sprague–Dawley rats. The control group had no electrical stimulus. The other two groups received cb-TENS at 20 Hz (20 Hz group) or 40 Hz (40 Hz group). Cb-TENS was administered daily for seven days and then twice a week for three weeks thereafter. To assess the recovery of facial function, whisker movement was monitored for four weeks. Histopathological evaluation of nerve regeneration was performed using transmission electron microscopy (TEM) and confocal microscopy with immunofluorescence (IF) staining. In addition, the levels of various molecular biological markers that affect nerve regeneration were analyzed. Whisker movement in the cb-TENS groups showed faster and better recovery than the control group. The 40 Hz group showed significantly better movement at the first week after injury (p < 0.0125). In histopathological analyses using TEM, nerve axons and Schwann cells, which were destroyed immediately after the injury, recovered in all groups over time. However, the regeneration of the myelin sheath was remarkably rapid and thicker in the 20 Hz and 40 Hz groups than in the control group. Image analysis using IF staining showed that the expression levels of S100B and NF200 increased over time in all groups. Specifically, the expression of NF200 in the 20 Hz and 40 Hz groups increased markedly compared to the control group. The real-time polymerase chain reaction was performed on ten representative neurotrophic factors, and the levels of IL-1β and IL-6 were significantly higher in the 20 and 40 Hz groups than in the control group (p < 0.015). Cb-TENS facilitated and accelerated FN recovery in the rat model, as it significantly reduced the recovery time for the whisker movement. The histopathological study and analysis of neurotrophic factors supported the role of cb-TENS in the enhanced regeneration of the FN.
In order to improve speech intelligibility for hearing-impaired people in various listening situations, it is necessary to diversify the possible focusing directions of a beamformer. In a previous report, the concept of binaural beam-steering that can focus a beamformer in diagonal directions was applied to a binaural hearing aid; however, in the previously proposed protocol, the effective frequency range for consistent diagonal beam-steering was limited to the 200-750 Hz range, which is far narrower than that of normal speech signals (200-4000 Hz). In this study, we proposed a modified binaural diagonal beam-steering technique that can reduce the focusing-direction deviations at high input frequencies up to 4000 Hz by introducing a new correction factor to the original protocol that can reduce the differences in gradient between the signal and the noise components at frequencies up to 4000 Hz. In simulation tests, the focusing effect of the proposed algorithm was more consistent than conventional algorithms. The deviations between the target and the focusing directions were reduced 27% in the left device and 6% in the right device with 45° steering at a 4000 Hz input signal, and were reduced 3% in the left device and 25% in the right device with 135° steering. On the basis of the experimental results, we believe that the proposed algorithm has the potential to help hearing-impaired people in various listening situations.
Detecting variation in contact pressure is a separate sensing mode in the human somatosensory system that differs from the detection of pressure magnitude. If pressure magnitude and variation sensing can be achieved simultaneously, an advanced biomimetic tactile system that better emulates human senses may be developed. We report on a novel single-layer graphene based artificial mechanoreceptor that generates a resistance pulse as the contact stimulus passes a specific threshold pressure, mimicking the generation of action potentials in a biological fast-adapting mechanoreceptor. The electric field from a flexible membrane gate electrode placed above a graphene channel raises the Fermi level from the valence band as pressure deflects the membrane. The threshold pressure is reached when the Fermi level crosses the Dirac point in the graphene energy band, which generates a sharp peak in the measured resistance. We found that by changing the gate potential it was possible to modulate the threshold pressure and using a series of graphene channels, a train of pulses were generated during a transient pressurizing stimulus demonstrating biomimetic behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.