This study aimed to investigate the effect of charge-balanced transcutaneous electrical nerve stimulation (cb-TENS) in accelerating recovery of the facial function and nerve regeneration after facial nerve (FN) section in a rat model. The main trunk of the left FN was divided and immediately sutured just distal to the stylomastoid foramen in 66 Sprague–Dawley rats. The control group had no electrical stimulus. The other two groups received cb-TENS at 20 Hz (20 Hz group) or 40 Hz (40 Hz group). Cb-TENS was administered daily for seven days and then twice a week for three weeks thereafter. To assess the recovery of facial function, whisker movement was monitored for four weeks. Histopathological evaluation of nerve regeneration was performed using transmission electron microscopy (TEM) and confocal microscopy with immunofluorescence (IF) staining. In addition, the levels of various molecular biological markers that affect nerve regeneration were analyzed. Whisker movement in the cb-TENS groups showed faster and better recovery than the control group. The 40 Hz group showed significantly better movement at the first week after injury (p < 0.0125). In histopathological analyses using TEM, nerve axons and Schwann cells, which were destroyed immediately after the injury, recovered in all groups over time. However, the regeneration of the myelin sheath was remarkably rapid and thicker in the 20 Hz and 40 Hz groups than in the control group. Image analysis using IF staining showed that the expression levels of S100B and NF200 increased over time in all groups. Specifically, the expression of NF200 in the 20 Hz and 40 Hz groups increased markedly compared to the control group. The real-time polymerase chain reaction was performed on ten representative neurotrophic factors, and the levels of IL-1β and IL-6 were significantly higher in the 20 and 40 Hz groups than in the control group (p < 0.015). Cb-TENS facilitated and accelerated FN recovery in the rat model, as it significantly reduced the recovery time for the whisker movement. The histopathological study and analysis of neurotrophic factors supported the role of cb-TENS in the enhanced regeneration of the FN.
Benzalkonium chloride, diazolidinyl urea, and imidazolidinyl urea are commonly used preservatives in cosmetics. Recent reports suggested that these compounds may have cellular and systemic toxicity in high concentration. In addition, diazolidinyl urea and imidazolidinyl urea are known formaldehyde (FA) releasers, raising concerns for these cosmetic preservatives. In this study, we investigated the effects of benzalkonium chloride, diazolidinyl urea, and imidazolidinyl urea on ROS-dependent apoptosis of rat neural progenitor cells (NPCs) in vitro. Cells were isolated and cultured from embryonic day 14 rat cortices. Cultured cells were treated with 1–1,000 nM benzalkonium chloride, and 1–50 μM diazolidinyl urea or imidazolidinyl urea at various time points to measure the reactive oxygen species (ROS). PI staining, MTT assay, and live-cell imaging were used for cell viability measurements. Western blot was carried out for cleaved caspase-3 and cleaved caspase-8 as apoptotic protein markers. In rat NPCs, ROS production and cleaved caspase-8 expression were increased while the cell viability was decreased in high concentrations of these substances. These results suggest that several cosmetic preservatives at high concentrations can induce neural toxicity in rat brains through ROS induction and apoptosis.
Brain aging induces neuropsychological changes, such as decreased memory capacity, language ability, and attention; and is also associated with neurodegenerative diseases. However, most of the studies on brain aging are focused on neurons, while senescence in astrocytes has received less attention. Astrocytes constitute the majority of cell types in the brain and perform various functions in the brain such as supporting brain structures, regulating blood-brain barrier permeability, transmitter uptake and regulation, and immunity modulation. Recent studies have shown that SIRT1 and SIRT2 play certain roles in cellular senescence in peripheral systems. Both SIRT1 and SIRT2 inhibitors delay tumor growth without significant general toxicity. In this study, we investigated the role of tenovin-1, an inhibitor of SIRT1 and SIRT2, on rat primary astrocytes where we observed senescence and other functional changes. Cellular senescence usually is characterized by irreversible cell cycle arrest and induces senescence-associated β-galactosidase (SA-β-gal) activity. Tenovin-1-treated astrocytes showed increased SA-β-gal-positive cell number, senescence-associated secretory phenotypes, including and , and cell cycle-related proteins like phospho-histone H3 and CDK2. Along with the molecular changes, tenovin-1 impaired the wound-healing activity of cultured primary astrocytes. These data suggest that tenovin-1 can induce cellular senescence in astrocytes possibly by inhibiting SIRT1 and SIRT2, which may play particular roles in brain aging and neurodegenerative conditions.
Despite some innate limitations, animal models are a potent investigative tool when used to model specific symptoms of a disorder. For example, MK-801, an N-methyl-D-aspartate receptor antagonist, is used as a pharmacological tool to induce symptoms found in some neuropsychiatric disorders. However, a close examination of literature suggests that the application window of MK-801 doses is relatively narrow between individual behavioral paradigms, necessitating careful characterization of the evoked behavioral aberrations and the doses used to induce them. Moreover, variation in behaviors depending on the animal strain, gender of the subject, and the timing of administration is observed, making it difficult to compare the behavioral characteristics reported in different studies. We aim to characterize the behavioral aberrations induced by different doses of MK-801 in CD-1 mice and create a ready reference for future studies. We used CD-1 mice to recapitulate behavioral impairments resulting from acute administration of MK-801. In 0.1 mg kg-1 , we observed diminished spontaneous alteration during the Y-maze test, while 0.12 mg kg-1 resulted in hyperlocomotion and social deficit. Mice treated with 0.2 and 0.3 mg kg-1 of MK-801 demonstrated a decreased self-grooming. Finally, all doses significantly impaired cliff avoidance behaviors suggesting increased impulsivity. These results affirm that MK-801 can effectively model various symptoms of different neuropsychiatric disorders in a dose-dependent manner. The observed sensitivity against spatial-memory impairment and impulsive behaviors at low concentration of MK-801 suggest that MK801 may modulate cognitive function and impulsivity in even lower concentration before it can modulate other behavioral domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.