Magnesium alloys are advanced, light materials used widely in industries and milling is one of the material removal processes that are extensively used. In this present study, the experimental work has been carried out based on a Box-Behnken design by mainly considering three factors, i.e., cutting speed, feed, and depth of cut. The first part of in this study, the effects of Response Surface methodology (RSM) and Artificial Neural Network (ANN) models were evaluated and compared. The RSM and ANN models provide the average error of 2.40 % and 1.52 %, respectively, it recommends that ANN is a more efficient methodology for the prediction of the optimal output response than RSM. The predicted model has been coupled with evolutionary optimization technique genetic algorithm (GA) to determine the optimum cutting parameters to attain the minimal surface roughness with respect to the wide ranges of machining parameters and GA suggest the surface roughness of 1.0926 μm with the optimized machining parameters. The evaluation of these observations proves that the proposed methods are capable of determining the optimum machining parameters for modern materials. Keywords: artificial neural network, genetic algorithm, magnesium alloy, milling, optimization Zlitine na osnovi magnezija (Mg) so napreden lahek material, ki se pogosto uporablja v razli~nih vejah industrije. Njegova mehanska obdelava z rezkanjem je ena od najpogostej{ih metod odstranjevanja materiala za dokon~no oblikovanje razli~nih industrijskih izdelkov. V predstavljeni {tudiji avtorji opisujejo eksperimentalno delo izvedeno na osnovi Box-Behnkenovega dizajna z upo{tevanjem treh faktorjev: rezalne hitrosti, pomika in globine reza. V prvem delu te {tudije so avtorji ovrednotili in primerjali u~inke dveh uporabljenih modelov: metodologije reakcije povr{ine (RSM; angl.: Response Surface Methodology) in umetne nevronske mre`e (ANN, angl: Artificial Neural Network). RSM in ANN modela sta predvidela povpre~no 2,40 % oz. 1,52 % napako. To pomeni, da je ANN u~inkovitej{a methodologija za napoved optimalne (reakcije) storilnosti. Model za prognozo so avtorji zdru`ili z evolucijsko optimizacijsko tehniko genetskih algoritmov (GA) in na ta na~in dolo~ili optimalne rezalne parametre za dosego minimalne povr{inske hrapavosti v obmo~ju dokaj {iroko izbranih parametrov mehanske obdelave. GA napoveduje povr{insko hrapavost 1.0926 μm pri optimiziranih parametrih mehanske obdelave. Ovrednotenje teh opazovanj je potrdilo da, je s predlaganimi metodami mo`no dolo~iti optimalne parametre mehanske obdelave modernih materialov. Klju~ne besede: umetna nevronska mre`a, genetski algoritem, zlitina na osnovi Mg, rezkanje, optimizacija