The rapid growth in biomedical applications of vibrational microscopy and imaging is in large part due to the vast amount of information inherent in the complete IR or Raman spectrum acquired from each pixel during the measurement. For characterization of tissues and cells, this spectral information directly monitors elements of molecular and supramolecular structure in the sample constituents. This situation is in sharp contrast to imaging techniques based on electronic spectroscopy, that is, absorption or fluorescence, where the relationship between the spectral properties of the chromophore and the molecular structure of the tissue in which it is located is generally not available. As an example (described later in this chapter) of the relationship between the spectra and the molecular structure information, IR images acquired during the healing of wounded skin permit us to distinguish the spatial distribution of collagen from keratin, and even more important, permit us to distinguish between the various forms of keratin in cells that are activated during reepithelialization of the wounded area [1].For the past several years, our laboratories have utilized IR spectroscopy, microscopy, and imaging to monitor the biophysics and pharmacology of the skin barrier and the spatial distribution of the major constituents in hair [2][3][4][5][6][7]. This chapter presents an overview of how to effectively use these technologies to generate useful molecular and supramolecular structure information from tissues and cells. Our general approach is reductionist and predicated upon the reasonable assumption that molecular structure information extracted from IR spectra collected from purified tissue components provides an appropriate basis for interpretation of tissue spectra. To illustrate this approach for skin, we demonstrate the sensitivity of the IR spectra of purified ceramides (a major skin lipid class) to lipid chain conformation and packing. We next utilize this information to interpret a structural transition in intact full thickness stratum corneum (SC). This structural information is used to track the kinetics of the restoration of the skin barrier following its disruption by thermal perturbation. Finally, we move to the imaging mode and demonstrate the feasibility of imaging conformational order in exogenous lipid vesicles following their application to skin.Subsequent to studies of the permeability barrier in skin, we demonstrate the use of IR microscopy to track biochemical alterations in single cells through evaluation of natural moisturizing factor (NMF), an important hydration control mechanism in corneocyte biology. Finally, two applications of IR imaging are presented. The first is a cosmetic science experiment detailing the spatial distribution of the lipid and protein constituents in hair. The second is an application to the healing of skin wounds, in which we track temporal and spatial changes in the distribution of skin proteins that Raman, Infrared, and Near-Infrared Chemical Imaging Edited by Slobodan...