This paper proposes an optimization problem formulation to tackle the challenges of cislunar Space Domain Awareness (SDA) through multi-spacecraft monitoring. Due to the large volume of interest as well as the richness of the dynamical environment, traditional design approaches for Earth-based architectures are known to have challenges in meeting design requirements for the cislunar SDA; thus, there is a growing need to have a multi-spacecraft system in cislunar orbits for SDA. The design of multi-spacecraft-based cislunar SDA architecture results in a complex multi-objective optimization problem, where parameters such as number of spacecraft, observability, and orbit stability must be taken into account simultaneously. Through the use of a multi-objective hidden genes genetic algorithm, this study explores the entirety of the design space associated with the cislunar SDA problem. A demonstration case study shows that our approach can provide architectures optimized for both cost and effectiveness.