Based on the progress and advances of additive manufacturing technologies, design and production of complex structures became cheaper and therefore rather possible in the recent past. A promising example of such complex structure is a so-called pantographic structure, which can be described as a metamaterial consisting of repeated substructure. In this substructure, two planes, which consist of two arrays of beams being orthogonally aligned to each other, are interconnected by cylinders/pivots. Different inner geometries were taken into account and additively manufactured by means of fused deposition modeling technique using polyethylene terephthalate glycol (PETG) as filament material. To further understand the effect of different manufacturing parameters on the mechanical deformation behavior, three types of specimens have been investigated by means of displacement-controlled extension tests. Different slicing approaches were implemented to eliminate process-related problems. Small and large deformations are investigated separately. Furthermore, 2D digital image correlation was used to calculate strains on the outer surface of the metamaterial. Two finite-element simulations based on linear elastic isotropic model and linear elastic transverse isotropic model have been carried out for small deformations. Standardized extension tests have been performed on 3D-printed PETG according to ISO 527-2. Results obtained from finite-element method have been validated by experimental results of small deformations. These results are in good agreement with linear elastic transverse isotropic model (up to about [Formula: see text] of axial elongation), though the response of large deformations indicates a nonlinear inelastic material behavior. Nevertheless, all samples are able to withstand outer loading conditions after the first rupture, resulting in resilience against ultimate failure.