In this paper we consider the problem of stabilizing continuous-tim e linear systems containing input nonlinearities and time delays. Speci® cally, a ® xed-order (i.e. fulland reduced-order) dynamic output feedback control technique is developed and su cient conditions involving a system of modi® ed Lyapunov± Riccati equations are presented for stabilization of systems with sector-bounde d input nonlinearities and state and measurement time delays.
NomenclatureA; B; C n £ n, n £ m and l £ n matrices respectively A c ; B c ; C c n c £ n c , n c £ l and m £ n c matrices respectively A d ; C d n £ n and l £ n matrices respectively E 1 ; E 2 p £ n and p £ m matrices respectively; E T 1 E 2ˆ0 I r ; 0 r r £ r identity matrix and r £ r zero matrix respectively n; l; m; p; q; n c ;ñ positive integers; 1 4 n c 4 n; nˆn ‡ n c R 1 ; R 2 n £ n and m £ m matrices respectively; R 1 7 E T 1 E 1 , R 2 7 E T 2 E 2 > 0 R ; R r£s ; R r real numbers, r £ s real matrices and R r£1 respectively V 1 ; V 2 n £ n and l £ l matrices respectively x; u; y; x c ;x n-, m-, l-, n c -andñ-dimensional vectors respectively ¬; ®;°; ¼ real positive scalars … † T ; … † ¡1 ; Tr… † transpose, inverse and trace respectively