Microalgae are a group of autotrophic microorganisms that live in marine, freshwater and soil ecosystems and produce organic substances in the process of photosynthesis. Due to their high metabolic flexibility, adaptation to various cultivation conditions as well as the possibility of rapid growth, the number of studies on their use as a source of biologically valuable products is growing rapidly. Currently, integrated technologies for the cultivation of microalgae aiming to isolate various biologically active substances from biomass to increase the profitability of algae production are being sought. To implement this kind of development, the high productivity of industrial cultivation systems must be accompanied by the ability to control the biosynthesis of biologically valuable compounds in conditions of intensive culture growth. The review considers the main factors (temperature, pH, component composition, etc.) that affect the biomass growth process and the biologically active substance synthesis in microalgae. The advantages and disadvantages of existing cultivation methods are outlined. An analysis of various methods for the isolation and overproduction of the main biologically active substances of microalgae (proteins, lipids, polysaccharides, pigments and vitamins) is presented and new technologies and approaches aimed at using microalgae as promising ingredients in value-added products are considered.