Consider the case where autonomous underwater vehicles (AUVs) are deployed to monitor a 3D underwater environment. This paper tackles the problem of guiding all AUVs to the destination while not colliding with a priori unknown 3D obstacles. Suppose that among all AUVs, only the leader AUV has an ability of locating itself, while accessing a destination location. A follower, an AUV that is not a leader, has no sensors for locating itself. Every follower can only measure the relative position of its neighbor AUVs utilizing its sonar sensors. Our paper addresses distributed controls, so that multiple followers track the leader while preserving communication connectivity. We design controls, so that all AUVs reach the destination safely, while maintaining connectivity in cluttered 3D environments. To the best of our knowledge, our article is novel in developing 3D underwater guidance controls, so that all AUVs equipped with sonar sensors are guided to reach a destination in a priori unknown cluttered environments. MATLAB simulations are used to validate the proposed guidance scheme in underwater environments with many obstacles.