To intra-individually investigate the variation of coronary artery calcium (CAC), aortic valve calcium (AVC), and mitral annular calcium (MAC) scores and the presence of blur artifacts as a function of temporal resolution in patients undergoing non-contrast cardiac CT on a dual-source photon counting detector (PCD) CT. This retrospective, IRB-approved study included 70 patients (30 women, 40 men, mean age 78 ± 9 years) who underwent ECG-gated cardiac non-contrast CT with PCD-CT (gantry rotation time 0.25 s) prior to transcatheter aortic valve replacement. Each scan was reconstructed at a temporal resolution of 66 ms using the dual-source information and at 125 ms using the single-source information. Average heart rate and heart rate variability were calculated from the recorded ECG. CAC, AVC, and MAC were quantified according to the Agatston method on images with both temporal resolutions. Two readers assessed blur artifacts using a 4-point visual grading scale. The influence of average heart rate and heart rate variability on calcium quantification and blur artifacts of the respective structures were analyzed by linear regression analysis. Mean heart rate and heart rate variability during data acquisition were 76 ± 17 beats per minute (bpm) and 4 ± 6 bpm, respectively. CAC scores were smaller on 66 ms (median, 511; interquartile range, 220–978) than on 125 ms reconstructions (538; 203–1050, p < 0.001). Median AVC scores [2809 (2009–3952) versus 3177 (2158–4273)] and median MAC scores [226 (0-1284) versus 251 (0-1574)] were also significantly smaller on 66ms than on 125ms reconstructions (p < 0.001). Reclassification of CAC and AVC risk categories occurred in 4% and 11% of cases, respectively, whereby the risk category was always overestimated on 125ms reconstructions. Image blur artifacts were significantly less on 66ms as opposed to 125 ms reconstructions (p < 0.001). Intra-individual analyses indicate that temporal resolution significantly impacts on calcium scoring with cardiac CT, with CAC, MAC, and AVC being overestimated at lower temporal resolution because of increased motion artifacts eventually leading to an overestimation of patient risk.