BackgroundThe molecular mechanism underlying broiler fat deposition is still poorly understood.MethodCurrently, we used two-dimensional gel electrophoresis (2DE) to identify differentially expressed proteins in abdominal adipose tissues of birds at 4 week of age derived from Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF).ResultsThirteen differentially expressed protein spots were screened out and identified by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The protein spots were matched to thirteen proteins by searching against the NCBInr database. These identified proteins were apolipoprotein A-I (Apo A-I), cytokeratin otokeratin, ATP synthase subunit alpha, peptidyl-prolyl cis-trans isomerase FKBP4 (PPIase FKBP4), aspartate aminotransferase, carbonic anhydrase II (CA-II), prostaglandin-H2 D-isomerase precursor, fibrinogen alpha chain, lamin-A (LMNA), superoxide dismutase [Mn] (MnSOD), heat shock protein beta-1 (HSPβ1) and two predicted proteins. These differentially expressed proteins are involved mainly in lipid metabolism, amino acid metabolism, signal transduction, energy conversion, antioxidant, and cytoskeleton. Differential expression of Apo A-I, PPIase FKBP4, and cytokeratin otokeratin proteins were further confirmed by Western blot analysis. Quantitative real-time RT-PCR analyses showed that, of these 13 differentially expressed proteins, only PPIase FKBP4 and cytokeratin otokeratin were differentially expressed at mRNA level between the two lines.ConclusionsOur results have provided further information for understanding the basic genetics control of growth and development of broiler adipose tissue.