Hepatocellular carcinoma (HCC) is significantly associated with adverse prognostic outcomes. The development and progression of different types of human tumors are significantly influenced by APOB. Nevertheless, the significance and pathomechanisms of APOB in HCC have not been conclusively determined. We assessed APOB expression levels in HCC using three publicly available databases of TIMER2.0, UALCAN and Human Protein Atlas. To identify the biological function of APOB, we conducted enrichment analysis via LinkedOmics. Moreover, UALCAN was employed to assess the relationship between APOB expression and clinicopathological features among HCC patients. Additionally, the Kaplan–Meier plotter was utilized to investigate the prognostic relevance of APOB in HCC. To explore potential regulatory ncRNAs that could bind to APOB, we utilized StarBase and GEPIA. Furthermore, the correlation between APOB expression and immune cell infiltration, as well as immune checkpoint genes, was investigated using Spearman's correlation analysis in TISIDB, GEPIA, and TIMER2.0. The findings of our investigation showed a notable decrease in the expression levels of APOB among individuals diagnosed with HCC. Moreover, a noteworthy correlation was observed between the expression of APOB and immune checkpoint genes, alongside the occurrence of immune cell infiltration. The levels of APOB expression in HCC tissues also showed correlations with various clinicopathological features. According to Cox regression analysis, decreased APOB expression emerged as a potential autonomous predictor for OS, RFS, DSS, and PFS among HCC patients. Furthermore, we identified six potential pathways associated with non-coding RNA (ncRNA) as the most promising pathway for APOB in HCC. Our results illuminate the possible involvement of APOB in HCC and offer understanding into its governing mechanisms and medical importance.