Background: While no significant differences in initial ovule number were found among oilseed rape genotypes, there was a large variation in effective ovule number (EON), which determines the final seeds per silique (SPS), a critical component of yield. Up to date, on study has been focused on unraveling the pre-flowering main factors to restrict EON and identifying the critical period of EON formation among contrasting nitrogen utilization efficiency (NUtE) oilseed rape genotypes.Results: In this study, we selected 18 oilseed rape genotypes with different NUtE to identify the main factors that contribute to EON, and determine if genotypes differed in the critical period of EON formation under both field and pot experiments from 2016-2018. Our results showed the high NUtE genotypes also showed 14.3% higher NUtE, accompanied with 29.4% higher yield per plant and 21.1% higher SPS. The greater productivity of the high NUtE oilseed rape genotypes was associated with 44.1% greater pollen number, 23.5% higher pollen vigor, and 39.3% lower ovule abortion rate, compared to the low NUtE genotypes. In addition, at the heart stage, the high NUtE genotypes displayed higher silique net photosynthetic rate, surface area, biomass, and RNA expression levels, compared to the low NUtE ones. Taken together, this study indicated the pollen number, pollen vigor and ovule abortion rate contributed to the final EON of diverse oilseed rape genotypes; the critical period of determining EON among contrasting NUtE genotypes was at the heart stage.Conclusion: Increasing pollen number and vigor, and decreasing ovule abortion rate before the heart stage should be the prerequisite for breeders to improve yield and NUtE of oilseed rape genotypes.