2017
DOI: 10.1016/j.csi.2016.11.006
|View full text |Cite
|
Sign up to set email alerts
|

Application of Data Mining techniques to identify relevant Key Performance Indicators

Abstract: Currently dashboards are the preferred tool across organizations to monitor business performance. Dashboards are often composed of different data visualization techniques, amongst which are Key Performance Indicators (KPIs) which play a crucial role in quickly providing accurate information by comparing current performance against a target required to fulfil business objectives. However, KPIs are not always well known and sometimes it is difficult to find an appropriate KPI to associate with each business obje… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
36
0
8

Year Published

2018
2018
2022
2022

Publication Types

Select...
4
4
2

Relationship

0
10

Authors

Journals

citations
Cited by 56 publications
(44 citation statements)
references
References 17 publications
(15 reference statements)
0
36
0
8
Order By: Relevance
“…Data Mining (DM) представља методу претраживања података која је, c развојем рачунарске технологије, дoниjeлa ефикаснocт при претраживању великих количина сирових података [3]. Data Mining је процес екстраховања претходно непознатих, ваљаних и дјелотворних информација из великих база података и коришћења тих информација за доношење кључних пословних одлука [4].…”
Section: примјена претраживања податакаunclassified
“…Data Mining (DM) представља методу претраживања података која је, c развојем рачунарске технологије, дoниjeлa ефикаснocт при претраживању великих количина сирових података [3]. Data Mining је процес екстраховања претходно непознатих, ваљаних и дјелотворних информација из великих база података и коришћења тих информација за доношење кључних пословних одлука [4].…”
Section: примјена претраживања податакаunclassified
“…In the current era, data mining has given a great deal of concern in the wide range application fields such as education [6], finance [7], manufacturing [8], healthcare [9], business [10], telecommunication [11], agriculture [12], and customer relationship management [13]. Furthermore, the most commonly data mining tasks include: classification, clustering, association rules, regression analysis, and decision tree [14], [15].…”
Section: Introductionmentioning
confidence: 99%
“…Data mining [13,14] refers to the process of discovering hidden information from massive amounts of data. The correlation study on the data and the extraction of key information from massive monitoring data is the primary content for establishing a seepage detection model given the increasing volume of monitoring data.…”
Section: Modeling Processmentioning
confidence: 99%