Over the last two decades, much attention has been paid to the area of goal-oriented requirements engineering (GORE), where goals are used as a useful conceptualization to elicit, model, and analyze requirements, capturing alternatives and conflicts. Goal modeling has been adapted and applied to many sub-topics within requirements engineering (RE) and beyond, such as agent orientation, aspect orientation, business intelligence, model-driven development, and security. Despite extensive efforts in this field, the RE community lacks a recent, general systematic literature review of the area. In this work, we present a systematic mapping study, covering the 246 top-cited GORE-related conference and journal papers, according to Scopus. Our literature map addresses several research questions: we classify the types of papers (e.g., proposals, formalizations, meta-studies), look at the presence of evaluation, the topics covered (e.g., security, agents, scenarios), frameworks used, venues, citations, author networks, and overall publication numbers. For most questions, we evaluate trends over time. Our findings show a proliferation of papers with new ideas and few citations, with a small number of authors and papers dominating citations; however, there is a slight rise in papers which build upon past work (implementations, integrations, and extensions). We see a rise in papers concerning adaptation/variability/evolution and a slight rise in case studies. Overall, interest in GORE has increased. We use our analysis results to make recommendations concerning future GORE research and make our data publicly available.
The Semantic Web encourages institutions, including libraries, to collect, link and share their data across the Web in order to ease its processing by machines to get better queries and results. Linked Data technologies enable to connect related data on the Web using the principles outlined by Tim Berners-Lee in 2006. Digital libraries have great potential to exchange and disseminate data linked to external resources using Linked Data. In this paper, a study about the current uses of Linked Data in digital libraries including the most important implementations in the world is presented. The study focuses on selected vocabularies and ontologies, benefits and problems encountered in implementing Linked Data on digital libraries. Besides, it also identifies and discusses specific challenges that digital libraries presents offering suggestions for ways in which libraries can contribute to the Semantic Web. The study uses an adapted methodology for literature review, to find data available to answer research questions. It is based on the information found in the library websites recommended by W3C Library Incubator Group in 2011, and scientific publications from Google Scholar, Scopus, ACM, and Springer from the last 5 years. The selected libraries for the study are National Library of France, Europeana Library, Library of Congress, British Library, and National Library of Spain. In this paper, we outline the best practices found in each experience and identify gaps and future trends.
Currently dashboards are the preferred tool across organizations to monitor business performance. Dashboards are often composed of different data visualization techniques, amongst which are Key Performance Indicators (KPIs) which play a crucial role in quickly providing accurate information by comparing current performance against a target required to fulfil business objectives. However, KPIs are not always well known and sometimes it is difficult to find an appropriate KPI to associate with each business objective. In addition, data mining techniques are often used when forecasting trends and visualizing data correlations. In this paper we present a new approach to combining these two aspects in order to drive data mining techniques to obtain specific KPIs for business objectives in a semi-automated way. The main benefit of our approach is that organizations do not need to rely on existing KPI lists or test KPIs over a cycle as they can analyze their behavior using existing data. In order to show the applicability of our approach, we apply our proposal to the fields of Massive Open Online Courses (MOOCs) and Open Data extracted from the University of Alicante in order to identify the KPIs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.