2020
DOI: 10.1063/5.0010904
|View full text |Cite
|
Sign up to set email alerts
|

Applications of a neural network to detect the percolating transitions in a system with variable radius of defects

Abstract: We systematically study the percolation phase transition at the change of concentration of the chaotic defects (pores) in an extended system where the disordered defects additionally have a variable random radius, using the methods of a neural network (NN). Two important parameters appear in such a material: the average value and the variance of the random pore radius, which leads to significant change in the properties of the phase transition compared with conventional percolation. To train a network, we use … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

2022
2022
2023
2023

Publication Types

Select...
3

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(2 citation statements)
references
References 41 publications
0
1
0
1
Order By: Relevance
“…In order to reduce the computational cost of clustering without reducing the quality of the solution. Burlak and Medina-Ángel used ant colony optimization technology to find factions in the network and assign these factions as meta-nodes, and then used traditional algorithms to find community members [11]. Xu and Yan proposed a fitness model, which uses fitness to determine whether nodes are connected [12].…”
Section: Related Workmentioning
confidence: 99%
“…In order to reduce the computational cost of clustering without reducing the quality of the solution. Burlak and Medina-Ángel used ant colony optimization technology to find factions in the network and assign these factions as meta-nodes, and then used traditional algorithms to find community members [11]. Xu and Yan proposed a fitness model, which uses fitness to determine whether nodes are connected [12].…”
Section: Related Workmentioning
confidence: 99%
“…El enfoque utilizado para crear los radios de los poros está centrado en las distribuciones más comúnmente utilizadas para simular poros de tamaño aleatorio y que frecuentemente son existenciales en la física general de los materiales porosos [11]. Por una parte, tenemos la distribución uniforme que sigue un promedio frecuente para los radios de los poros y la distribución normal o distribución Gaussiana, método con el cual se consiguen radios de tamaño que también son aleatorios pero con una distribución de los radios que van desde los poros más pequeños hasta poros más grandes, pasando por el promedio donde la frecuencia de los radios tiende a generar poros con radios similares [12].…”
Section: Clústeres Y Distribucionesunclassified