Anais De XXIX Simpósio Brasileiro De Telecomunicações 2011
DOI: 10.14209/sbrt.2011.158
|View full text |Cite
|
Sign up to set email alerts
|

Applications of Data-Selective Adaptive Filters

Abstract: Resumo-Neste artigo nós discutimos sobre as potencialidades e importância de mecanismos de seleção de dados em problemas reais. Nós mostramos como filtros adaptativos com seletividade de dados podem ser explorados com a finalidade de melhorar o desempenho de sistemas de comunicações e canceladores de eco acústico. Para sistemas de comunicações propomos algoritmos com seletividade de dados para equalização semi-cega em sistemas baseados em OFDM empregando o esquema de modulação digital QPSK que aumenta o throug… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2016
2016
2016
2016

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 6 publications
0
1
0
Order By: Relevance
“…Other work on the topic includes [104] (Kalman filter based sparse adaptive filter), [105] ("proportionate-type algorithms" for online sparsity-aware system identification problems), [106] (combine sparsity-promoting schemes with dataselection mechanisms), [107] (greedy sparse RLS), [108] (recursive ℓ 1,∞ group LASSO), [109] (variational Bayes framework for sparse adaptive filtering) and [110], [111] (distributed adaptive filtering).…”
Section: B Sparsity-aware Adaptive Filtering and Its Application To R...mentioning
confidence: 99%
“…Other work on the topic includes [104] (Kalman filter based sparse adaptive filter), [105] ("proportionate-type algorithms" for online sparsity-aware system identification problems), [106] (combine sparsity-promoting schemes with dataselection mechanisms), [107] (greedy sparse RLS), [108] (recursive ℓ 1,∞ group LASSO), [109] (variational Bayes framework for sparse adaptive filtering) and [110], [111] (distributed adaptive filtering).…”
Section: B Sparsity-aware Adaptive Filtering and Its Application To R...mentioning
confidence: 99%