A scheme for the simultaneous determination of oxygen and temperature using quantum dots and a ruthenium complex is demonstrated. The luminescent complex [Ru(II)-tris(4,7-diphenyl-1,10-phenanthroline)]2+ is immobilized in a non-hydrolytic sol-gel matrix and used as the oxygen sensor. The temperature information is provided by the luminescent emission of core-shell CdSe-ZnS semiconductor nanocrystals immobilized in the same material. Measurements of oxygen and temperature could be performed with associated errors of +/-2% of oxygen concentration and +/-1 degrees C, respectively. In addition, it is shown that while the dye luminescence intensity is quenched both by oxygen and temperature, the nanocrystals luminescent emission responds only to temperature. Results presented demonstrate that the combined luminescence response allows the simultaneous assessment of both parameters using a single optical fiber system. In particular, it was shown that a 10% error in the measured oxygen concentration, induced by a change in the sample temperature, could be compensated using the nanocrystals temperature information and a correction function.