Insects as pests destroy annually an estimated 18–20% of the crop production worldwide. Caterpillars, the larval stage of moths, are the major pests of agricultural products owing to their voracious feeding habits. In the past few decades, the potent methods of insect control, such as insecticides and Bt toxins, have been constrained as a result of health hazards, environmental issues, and development of resistance, after their prolonged application. Thus, there is need to find alternative options to improve plant protection strategies. Recently, RNA interference (RNAi), the post-transcriptional gene-silencing mechanism, has emerged as one of such a novel, sustainable, and environment friendly approaches for insect management and crop protection. RNAi technology relies on selection of a vital insect pest target gene and its expression as a double stranded RNA or stem-loop RNA molecule, which is recognized by the host RNAi machinery and processed into small interfering RNAs (siRNAs) or microRNAs (miRNAs). The siRNA/miRNA along with the RNA-induced silencing complex (RISC) binds to the complimentary mRNA and induce gene silencing at post-transcriptional level. With effective target-gene selection and transgenic plants expressing these precursor RNA molecules, insect pests of various crops have been efficiently managed. In this chapter, we discuss the basic mechanism of RNAi and its application in controlling lepidopteran pests of important crop plants.