1969
DOI: 10.4064/aa-15-4-393-416
|View full text |Cite
|
Sign up to set email alerts
|

Approximation to real numbers by algebraic integers

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1

Citation Types

10
271
0
15

Year Published

2005
2005
2021
2021

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 98 publications
(296 citation statements)
references
References 0 publications
10
271
0
15
Order By: Relevance
“…For a positive real number x, we denote by x the smallest integer ≥ x. The following statement translates the main results of [14] and of [22] in terms of exponents: THEOREM 2.5. -For any integer n ≥ 1 and any transcendental real number ξ, we have…”
Section: Annales De L'institut Fouriermentioning
confidence: 99%
See 3 more Smart Citations
“…For a positive real number x, we denote by x the smallest integer ≥ x. The following statement translates the main results of [14] and of [22] in terms of exponents: THEOREM 2.5. -For any integer n ≥ 1 and any transcendental real number ξ, we have…”
Section: Annales De L'institut Fouriermentioning
confidence: 99%
“…Some results of [14] have been recently improved by Laurent [22]. For a positive real number x, we denote by x the smallest integer ≥ x.…”
Section: Annales De L'institut Fouriermentioning
confidence: 99%
See 2 more Smart Citations
“…Le premier résultat remonte à V. Jarník [6] (voir aussi [3] et [7]). Il affirme que pour n ≥ 2 il y a un nombre infini de triplets de meilleures approximations consécutives (g ν , g ν+1 , g ν+2 ) formés de vecteurs linéairement indépendants.…”
unclassified