The manuscript aims to provide glimpse on updated information relating thermo-mechanical dry coating processes (TMDCP) suiting in modifying surface attributes of fine and ultra-fine particle (FiUlFiP). FiUlFiPs are the integral component of pharmaceutical processes. They exhibit complex and queer properties, are conferred mostly from their surface attributes colligated with their higher surface area. Particle engineering technocrats extensively working for modifying surface & surface attributes of FiUlFiPs. These efforts are to find their worthy applications & new functionalities. Among available diverse particle engineering technologies/ process, TMDCP, a dry coating process (DCP), advocated being worthy and efficient. The TMDCP finds multidisciplinary applications, mostly in drug development & drug delivery. Said DCP involves fixing and/or attaching coating material (CoM) as particles herein synonym guest particle (GP) onto core/substrate particle (CSP) herein synonym host particle (HP). Attaching/ fixing the GPs onto HPs, in TMDCP, involve their mechanical and/or thermal interactions. Scientific literatures are evidencing diverse techniques and/or process, basing on discussed interactions. Amongst them novel techniques/ processes are Hybridization, Magnetically assisted impaction coating process (MAICP), Mechanofusion, Theta-composer, and high shear compaction. In this area diverse devices/ equipments are prevailing in market. Important are Hybridizer, Magnetically assisted impaction coater (MAIC), Theta-composer, Mechanofusion, Quadro Comil®, Cyclomix®, and many others. Attempt of this article is to discuss and present their method of working, working principle, applicability, limitations, and benefits. Contained information might be beneficial for professionals of pharmaceutical and allied field.
Keywords: dry coating, equipment, particles, processes, thermo-mechanical.