In this work, the response surface methodology was used to optimize the process parameters of gallic acid adsorption on magnetic ion exchange (MIEX) resin. Based on Box-Behnken Design, a quadratic polynomial model equation including solution pH, gallic acid concentration, MIEX resin dosage and adsorption time was established. The reliability of the established regression equation was tested by variance analysis. Based on the regression equation, the technical parameters for gallic acid adsorption on MIEX resin were optimized and the effects of interaction between variables on the removal of gallic acid were analyzed. The results showed that the established regression equation was reliable and could effectively predict the removal of gallic acid. The optimal technical parameters were determined to be a pH of 9.17, a gallic acid concentration of 8.07 mg/L, a resin dosage of 0.98 mL/L and an adsorption time of 46.43 min. The removal efficiency of gallic acid was 97.93% under the optimal parameters. The interaction between pH and adsorption time had the most significant effect on the removal of gallic acid. The results of this study demonstrated that MIEX resin can remove gallic acid efficiently and relatively quickly under the condition of optimal technical parameters.