Time of day-dependent variations of immune system parameters are ubiquitous phenomena in immunology. The circadian clock has been attributed with coordinating these variations on multiple levels; however, their molecular basis is little understood. Here, we systematically investigated the link between the circadian clock and rhythmic immune functions. We show that spleen, lymph nodes, and peritoneal macrophages of mice contain intrinsic circadian clockworks that operate autonomously even ex vivo. These clocks regulate circadian rhythms in inflammatory innate immune functions: Isolated spleen cells stimulated with bacterial endotoxin at different circadian times display circadian rhythms in TNF-␣ and IL-6 secretion. Interestingly, we found that these rhythms are not driven by systemic glucocorticoid variations nor are they due to the detected circadian fluctuation in the cellular constitution of the spleen. Rather, a local circadian clock operative in splenic macrophages likely governs these oscillations as indicated by endotoxin stimulation experiments in rhythmic primary cell cultures. On the molecular level, we show that >8% of the macrophage transcriptome oscillates in a circadian fashion, including many important regulators for pathogen recognition and cytokine secretion. As such, understanding the cross-talk between the circadian clock and the immune system provides insights into the timing mechanism of physiological and pathophysiological immune functions.adrenalectomy ͉ LPS ͉ IL-6 ͉ microarray ͉ TNF-␣ A 24-h periodicity in the environment has led to the evolution of molecular circadian clocks in organisms ranging from cyanobacteria to humans. Circadian rhythms display a near 24-h period and persist even in the absence of external timing information. In mammals, a small hypothalamic region, the suprachiasmatic nucleus (SCN), has been identified as the master pacemaker regulating circadian rhythms in physiology, metabolism, and behavior (1). Recent evidence shows that also peripheral organs such as liver, heart, kidney, skin, and even cultured cell lines contain circadian oscillators. Although the SCN probably sets the phase of these peripheral clocks (by as yet unknown means), recent reports implicate peripheral clocks in the regulation of local physiology (2-4). The fundamental mechanism of rhythm generation is cell autonomous and highly conserved in SCN and peripheral cells: Interlocked transcriptional/translational feedback loops involving clock genes, such as Per1-3, Cry1-2, Clock, Bmal1, and Rev-Erb␣ create oscillations on the molecular level (reviewed in ref. 2).In the immune system, many functions and parameters have been described to be time-of-day dependent, e.g., lymphocyte proliferation (5), natural killer (NK) cell activity (6), humoral immune response (7), rhythms in absolute and relative numbers of circulating white blood cells and their subsets (8), cytokine levels (9), and serum cortisol (10) (reviewed in ref. 11). In addition, time-of-day variation in susceptibility to infection (12), cour...