Purpose
To determine whether accommodative errors in emmetropes and myopes are systematically different, and the effect of using different instruments and metrics.
Methods
Seventy‐six adults aged 18–27 years comprising 24 emmetropes (spherical equivalent refraction of the dominant eye +0.04 ± 0.03 D) and 52 myopes (−2.73 ± 0.22 D) were included. Accommodation responses were measured with a Grand Seiko WAM‐5500 and a Hartmann–Shack Complete Ophthalmic Analysis System aberrometer, using pupil plane (Zernike and Seidel refraction) and retinal image plane (neural sharpness—NS; and visual Strehl ratio for modulation transfer function—VSMTF) metrics at 40, 33 and 25 cm. Accommodation stimuli were presented to the corrected dominant eye, and responses, referenced to the corneal plane, were determined in the fellow eye. Linear mixed‐effects models were used to determine influence of the refractive group, the measurement method, accommodation stimulus, age, race, parental myopia, gender and binocular measures of heterophoria, accommodative convergence/accommodation and convergence accommodation/convergence ratios.
Results
Lags of accommodation were affected significantly by the measurement method (p < 0.001), the refractive group (p = 0.003), near heterophoria (p = 0.002) and accommodative stimulus (p < 0.05), with significant interactions between some of these variables. Overall, emmetropes had smaller lags of accommodation than myopes with respective means ± standard errors of 0.31 ± 0.08 D and 0.61 ± 0.06 D (p = 0.003). Lags were largest for the Grand Seiko and Zernike defocus, intermediate for NS and VSMTF, and least for Seidel defocus.
Conclusions
The mean lag of accommodation in emmetropes is approximately equal to the previously reported depth of focus. Myopes had larger (double) lags than emmetropes. Differences between methods and instruments could be as great as 0.50 D, and this must be considered when comparing studies and outcomes. Accommodative lag increased with the accommodation stimulus, but only for methods using a fixed small pupil diameter.