This study was designed to explore the relationship between miR‐1275 and SERPINE1 and its effects on glioma cell proliferation, migration, invasion and apoptosis. Differentially expressed miRNAs and mRNAs in glioma tissues were screened out by bioinformatic analysis. Dual‐luciferase reporter gene assay was used to validate the targeted relationship between miR‐1275 and SERPINE1. qRT‐PCR was used to detect the expression of miR‐1275 and SERPINE1 in glioma tissues. The expressions of SERPINE1 and p53 pathway‐related proteins in glioma cells were detected by western blot. Glioma cell proliferation, apoptosis, migration and invasion were respectively detected by CCK‐8 assay, flow cytometry, wound healing assay and transwell assay. Tumour xenograft model was developed to study the influence of miR‐1275 and SERPINE1 on glioma growth in vivo. The results of microarray analysis, qRT‐PCR and western blot showed that miR‐1275 was low‐expressed while SERPINE1 was high‐expressed in glioma. Dual‐luciferase assay showed that miR‐1275 could bind to SERPINE1. Overexpression of miR‐1275 could promote the p53 pathway‐related proteins’ expression. Highly expressed miR‐1275 could repress the migration, proliferation and invasion of glioma cells while highly expressed SERPINE1 had inverse effects. Tumour xenograft showed that up‐regulated miR‐1275 or down‐regulated SERPINE1 could repress glioma growth in vivo. Up‐regulation of miR‐1275 activated p53 signalling pathway via regulating SERPINE1 and therefore suppressed glioma cell proliferation, invasion and migration, whereas promoted cell apoptosis.