2007
DOI: 10.1016/j.jmatprotec.2006.10.011
|View full text |Cite
|
Sign up to set email alerts
|

Artificial neural networks for quality control by ultrasonic testing in resistance spot welding

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
44
0
3

Year Published

2011
2011
2021
2021

Publication Types

Select...
5
4

Relationship

0
9

Authors

Journals

citations
Cited by 86 publications
(47 citation statements)
references
References 19 publications
0
44
0
3
Order By: Relevance
“…This function is one of the fastest backpropagation algorithms available. This algorithm was proven to give good results in the quality control for the resistance spot welding [65], prediction of the strength of mineral admixture concrete [66] and predicting residual strength of non-linear ultrasonic evaluated damaged concrete [8]. The ANN network when trained, validated, and tested to attain a performance goal produced stochastic results.…”
Section: Methodsmentioning
confidence: 99%
“…This function is one of the fastest backpropagation algorithms available. This algorithm was proven to give good results in the quality control for the resistance spot welding [65], prediction of the strength of mineral admixture concrete [66] and predicting residual strength of non-linear ultrasonic evaluated damaged concrete [8]. The ANN network when trained, validated, and tested to attain a performance goal produced stochastic results.…”
Section: Methodsmentioning
confidence: 99%
“…Así mismo, se utilizaron las Redes Neuronales Artificiales (RNA), que son modelos matemáticos que replican de manera simplificada el procesamiento de información del cerebro (Martín et al, 2007;Velásquez et al, 2009), para discriminar y clasificar las empresas en un perfil exportador, a partir del cual se identificaron oportunidades de mejora. Para efectos de su aplicación, se utilizó el Perceptrón Multicapa que es un tipo de red neuronal artificial que se caracteriza por su facilidad de implementación.…”
Section: Metodologíaunclassified
“…18 The nugget is formed from the solidification of the molten metal and has a cast microstructure with coarse and columnar grains. 4,19 The human operator uses the ultrasonic testing to classify the 330 RSW joints into four categories ( Figure 1) according to the effect of the weld nugget on the ultrasonic beam: 4,19 (i) good weld (acceptable quality level): 123/330; (ii) undersize weld (unacceptable quality level): 86/330; (iii) stick weld (unacceptable quality level): 13/330; (iv) no weld (unacceptable quality level): 68/330.…”
Section: Quality Levelsmentioning
confidence: 99%