2018
DOI: 10.1007/s13762-018-1798-4
|View full text |Cite
|
Sign up to set email alerts
|

Artificial neural networks modeling for the prediction of Pb(II) adsorption

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 23 publications
(3 citation statements)
references
References 28 publications
0
2
0
1
Order By: Relevance
“…ANN is a tool able to processing information and establishing a relationship between inputs-outputs that may guess the behavior of a procedure under diverse circumstances. ANN represents a powerful predictive model that employs experimental data for learning and does not require knowledge of system rules [18,19].…”
Section: Introductionmentioning
confidence: 99%
“…ANN is a tool able to processing information and establishing a relationship between inputs-outputs that may guess the behavior of a procedure under diverse circumstances. ANN represents a powerful predictive model that employs experimental data for learning and does not require knowledge of system rules [18,19].…”
Section: Introductionmentioning
confidence: 99%
“…A) Discontinuous narrow undercutting defect B) Continuous wide undercutting (Zong et al, 2016) The stress is concentrated at the bottom of an undercut because it has a notch-like effect (Juvinall & Marshek 1991) In butt welded joints, stress concentration occurs at the undercut which initiates a crack when the weldment is subjected to dynamic loads (Liinalampi et al, 2019;Molski & Tarasiuk, 2020;Kurtulmuş & Doğan, 2021;Kiraz et al, 2023). Fatigue cracks always start at stress raisers easily (Liinalampi et al, 2019).…”
Section: Figure 1 Two Different Undercut Discontinuities Formed In Bu...mentioning
confidence: 99%
“…tetapi persamaan-persamaan tersebut belum bisa menjelaskan pengaruh parameter operasi adsorpsi yang tidak hanya terbatas pada konsentrasi awal adsorbate dan jumlah adsorben, seperti pH, suhu dan karakteristik adsorben(Hafsa et al, 2020;Kiraz et al, 2019). Sehingga berkembanglah metode statistik(Hafsa et al, 2020;Pauletto et al, 2020) seperti response surface method (model machine learning dengan metode Stratified 10-fold Cross validation, terlihat bahwa model machine learning dapat digunakan untuk melakukan prediksi adsorpsi metilene biru pada karbon aktif dengan tingkat akurasi yang berbeda-beda.…”
unclassified