There are only a few studies of noncovalent association in fluorous solvents and even fewer that are quantitative. A full understanding, particularly of stoichiometry and binding strength of noncovalent interactions in fluorous solvents could be very useful in improved molecular-receptor-based extractions, advancements in sensor technologies, crystal engineering, and supramolecular chemistry. This work investigates hydrogen bonding between heterocyclic bases and a perfluoropolyether with a terminal carboxylic acid group (Krytox 157FSH (1)), chiefly in FC-72 (a mixture of perfluorohexanes). In particular, we were interested in whether or not proton transfer occurs, and if so, under what conditions in H-bonded complexes. Continuous variations experiments show that in FC-72 weaker bases (pyrazine, pyrimidine, and quinazoline) form 1:1 complexes with 1, whereas stronger bases (quinoline, pyridine, and isoquinoline) form 1:3 complexes. Ultraviolet and infrared spectral signatures reveal that the 1:1 complexes are molecular (B · HA) whereas the 1:3 complexes are ionic (BH + · A -HAHA). Infrared spectra of 1:3 ionic complexes are discussed in detail. Literature and experimental data on complexes between N-heterocyclic bases and carboxylic acids in a range of solvents are compiled to compare solvent effects on proton transfer. Polar solvents support ionic hydrogen bonds at a 1:1 mol ratio. In nonpolar organic solvents, ionic hydrogen bonds are only observed in complexes with 1:2 (base/acid) stoichiometries. In fluorous solvents, a larger excess of acid, 1:3, is necessary to facilitate proton transfer in hydrogen bonds between carboxylic acids and the bases studied.