This paper presents an approach to developing robust metadata standards for specific applications that serves to ensure a high level of reliability and interoperability for a spectroscopy dataset. The challenges of designing a metadata standard that meets the unique requirements of specific user communities are examined, including in situ measurement of reflectance underwater, using coral as a case in point. Metadata schema mappings from seven existing metadata standards demonstrate that they consistently fail to meet the needs of field spectroscopy scientists for general and specific applications (μ = 22%, σ = 32% conformance with the core metadata requirements and μ = 19%, σ = 18% for the special case of a benthic (e.g., coral) reflectance metadataset). Issues such as field measurement methods, instrument calibration, and data representativeness for marine field spectroscopy campaigns are investigated within the context of submerged benthic measurements. The implication of semantics and syntax for a robust and flexible metadata standard are also considered. A hybrid standard that serves as a "best of breed" incorporating useful modules and parameters within the standards is proposed. This paper is Part 3 in a series of papers in this journal, examining the issues central to a metadata standard for field spectroscopy datasets. The results presented in this paper are an important step towards field spectroscopy metadata standards that address the specific needs of field
OPEN ACCESSRemote Sens. 2015, 7 15669 spectroscopy data stakeholders while facilitating dataset documentation, quality assurance, discoverability and data exchange within large-scale information sharing platforms.