Regulating performance of the main steam temperature (MST) system concerns the economy and safety of the coal-fired power plant (CFPP). This paper develops an offset-free offline robust model predictive control (RMPC) strategy for the MST system of CFPP. Zonotope-type uncertain model is utilized as the prediction model in the proposed RMPC design owing to its features of higher accuracy, compactness of representation and less complexity. An offline RMPC aiming at the system robustness and computational efficiency is then developed to maintain the desired steam temperature in case of wide operating condition change. The proposed RMPC is realized by two stages: in the first stage, the RMPC law set, which is the piecewise affine (PWA) of the MST system state is designed offline; then in the second stage, the explicit control law is selected online according to the current state. To achieve an offset-free tracking performance, a manipulated variable target observer is employed to update the chosen RMPC law. The control simulations using on-site operating data of a 1000 MW ultra-supercritical power plant show that the proposed approach can achieve satisfactory control performance and online computation efficiency even under complicated operating conditions.